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SOME INTEGRAL FORMULAS AND THEIR APPLICATIONS
TO HYPERSURFACES OF S§* x §*

GERALD D. LUDDEN & MASAFUMI OKUMURA

In his recent paper [4], Simons has established a fundamental formula for
the Laplacian of the length of the second fundamental tensor of a submanifold
of a Riemannian manifold and has obtained an application in the case of a
minimal hypersurface of a sphere. Nomizu and Smyth [2] then obtained an
important application of the formula of Simons’ type to a hypersurface of con-
stant mean curvature immersed in a space of nonnegative constant curvature.

On the other hand, Chern-do Carmo-Kobayashi [1] have obtained a classi-
fication theorem for submanifolds with the second fundamental tensor of con-
stant length which is immersed in a sphere.

In this paper we discuss the same type of problem for compact orientable
hypersurfaces with constant mean curvature immersed in S* x S”.

In § 1 we review some fundamental formulas for a hypersurface of $* x §*.

In § 2, using the formulas obtained in § 1 we establish an integral formula
of Simons’ type and obtain a theorem corresponding to that of Simons’ paper.

In §3 we consider an invariant hypersurface of $* X S* and prove some
classification theorems corresponding to those of Chern-do Carmo-Kobayashi
and of Nomizu-Smyth.

1. Hypersurfaces of §* x S~

Let $” be an n-dimensional sphere of radius 1, and consider $* x S™. We
denote by P and Q the projection mappings of the tangent space of S* x §*
to each component $” respectively. Then we have

(1.1 P+0=1,
(1.2) pP=P, &=0,
(1.3) PO=0P=0.
We put

(1.4 i=P—-0.
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Then by virtue of (1.1),(1.2) and (1.3), we can easily see that
(1.5 r=1I,
(1.6) rJ =0,

where trJ denotes the trace of J. We call J an almost product structure on
: V>V<eSde;ﬁne a Riemannian metric on S* X §* by
g(X.Y) = g(PX,PY) + g(0X,07) ,
where g’ is the Riemannian metric of S*. Then it follows that
(1.7) gdx,7) = gX,iv),
(1.9) Vel =0,

where 7 denotes the operator of covariant differentiation with respect to the
Riemannian connection of g.
Since the curvature tensor of 5™ is of the form

RX',YNZ = g(Y',Z)X — g(X',Z)Y",
the curvature tensor of S* x S* is given by [5], [6]
(1.9) RX,VZ
' = Ha¥, DX — g X, DY + gd¥,2)IX — gX, DY},

from which we can easily see that S* X S* is an Einstein manifold because of
(1.6) and (1.7).

Now, let M be a hypersurface of S* X S*, and B the differential of the
imbedding i of M into S™ x §*. Let X be a tangent vector field of M. Apply-
ing J to BX and to the unit normal vector N of M, we obtain vector fields
JBX and JN which can be written in the following way:

(1.10) JBX = BfX + u(X)N ,
(1.11) JN = BU + N .

Then f, u, U and i define a symmetric linear transformation of the tangent
bundle of M, a 1-form, a vector field and a function on M respectively. More-
over, we easily see that

U, X = u(X),

where g is the induced Riemannian metric on M.
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If u is identically O, then M is said to be an invariant hypersurface, that is,
the tangent space T.(M) is invariant under J. We will see later (1.20) that this
is equivalent to 22 = 1.

We denote by F the operator of covariant differentiation with respect to the
Riemannian connection of g. Then the Gauss and Weingarten equations are
given by

(1.12) VpxBY = BV Y + h(X,Y)N ,

(1.13) VexN = —BHX ,

where # is the second fundamental tensor of the hypersurface and satisfies
WX,Y)=gHX,Y) = g(X,HY) = (Y ,X) .

The relation between the curvature tensors of S x S$” and of M is given by

R(BX,BY)BZ = B{R(X,Y)Z — h(Y,Z)HX + h(X,Z)HY}

(1.14)
+ Pxh(Y,Z) — VX, 2N .
Substituting (1.9) into (1.14) and making use of (1.10), we obtain

RX,NZ = H{gY, D)X — 3(X,2)Y + g(fY, D)X — (X, 2)fY}
+ WY, ZHX ~ h(X,Z)HY ,

(1.15)
(1.16) FH)Y — FyH)X = HuX)fY — u(¥)fX) .
We apply J to both sides of (1.10). Then by virtue of (1.10) and (1.11) we get
BX = B{fX + u(X)U) + (u(fX) + au(X)N ,

which implies that
(1.1 X=X —uX)U,
(1.18) u(fX) = —au(X) .

Applying J to both sides of (1.11), we obtain

N = B(fU + aU) + wU) + BN ,

that is,
(1.19) fU = ~-aU,
(1.20) wll) =g(U,U)=1— 2.
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Pick an_orthonorma_l frame E,,a« = 1,---,2n in such a way that the first
2n — 1 E.’s satisfy E; = BE,, and E,, = N. Then because of (1.6) and (1.10)
we have

2n-1 2n-~1 2n—~1 -
trf= Z}l 8(E,E) = Y g(BfE;, BE) = Y. g(JBE,, BE,)
= =1 i=1

§=

= (E,E,,)—g(’N,N):trf—).:—z.

(1.21)

[

Differentiating (1.10) convariantly and making use of (1.10),(1.11),(1.12)
and (1.13), we have

JBVyX + WX, Y)N)
= BVy(fX) + h(fX, YN + Zyu) (XN + u(PyX)N — u(X)BHY ,

from which we have

(1.22) TeHX = X, Y)U + u(X)HY ,

(1.23) Fr)X) = 20X, Y) — h(fX,Y) .
Similarly differentiating (1.11) covariantly, we get

(1.24) VU= —fHX + 2HX ,

(1.25) X1= -2r(U,X) = —2u(HX) .
We also have.

(1.26) ttVyH =Vytr H= 3 gV H)X,E) ,

where E,,i = 1, --.,2n — 1 are the vector fields which extend to an ortho-
normal basis in 7. (M) in a neighborhood of x.

2. Integral formulas for the hypersurface

Consider the function S = tr H®. Since the unit normal vector N is defined
up to a sign, § is defined globally on M. We will now compute the Laplacian
4S. We have

XS:VXS=VX1IHZ=’(IVXH2

from which we have
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YXS=2tu WV H)H + 2trt T H)YVH) ,
TyX)§=2t0 (Vy,HH .

Hence
2n—1
2.1 348 = {r (PgleH — VVEiEiH)H) + tr Vg HP} .
i=1
Putting
K(X, Y) = Vy(V_xH) —_ Vyny s
we have

(2.2) KX, Y)Z = K(Y,X)Z + R(X,Y)HZ) — HR(X,Y)Z) .

LetE;,i=1,.-.,2n — 1 be an orthonormal basis in T,(M), and extend the
E; to vector fields in a neighborhood of x in such a way that FyE; = 0 at x.
Let X be a vector field such that /X = O at x. Replacing X, Y, and Z in
(2.2) by E;, X and E, respectively and taking account of (1.16) and the fact
that V,E, = 0, X = 0, we obtain

K(Eia X)Ei = (VE;(VXH))E'(Z - (VVEiXH)Ei
= Vs ((VxH)E)) — 7 xH) 5.Ey)
=V {Pe DX + WX)E, — w(EJX)} .

Continuing this computation and making use of (1.22), (1.23), we have at x

K(E;, X)E; = Vg )X + HUW(X, E)) — h(X, E)IE,
+ u)WAE;, EQU + w(E)HE,) — (AW(E,;, E))
— h(E;, EDfX — wE)RE;, X)U + w(X)HE)} ,

from which we get
S K(E, X)E; = 5 [K(E:, E)X + YGh(X,E) — h(X, E))E;)
i=1 i=1

+ HueO@ MU + uX) 3, 8U, EJHE,
— At H)fX + (tr HHfX
~'% o, EOW(EL D)V -5, u(EGuCOHE,

Here
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T hC B = 1(E etHX, EJE.) = fhX
T hUX, E)E, = fHIX ,
Z WE)HE, = 3, 8(U, EJHE, = H(z 2(U, E)E) — HU,
T oU EDHE, X) =5, (U, EJg(HX, E)
= zz g(HX, g(U, E)E,) = g(HX, U) .
Hence

03 Y KELXE, = %, K(E, E)X + WAHX — fHIX + u(x)(r H)U
+ (tr HNIX — it B)IX — g(HX, U)U} .

Thus we get from (2.2) and (2.3) that

" K(E, EDX + HAHX — fHIX + u(X)( U + (& BAFX
— Atr DfX ~ g(HX, U)U}
=%, {K(X.EJE; + R(E., X)HE) — HR(E,, X)E)} .

We now assume that the hypersurface M has constant mean curvature, that is,
tr H = const. Then (1.26) and the choice of E; and X show that

-1 2n—-1 2n~1
T KX EIE = 5, x5 H) = Uy BDE. = 3, (727 5 H)E; = 0 .

Hence we get
T K(E. EDX = —}{WHX — fHIX + u(X)(tx H)U
(2.4) + (tr HDFX — i E)IX — g(HX, U)U}
+ % {RE, OHE) ~ BRE, DE)} .

On the other hand, by (1.15) we have

S R(E,, XY)VHE,) = (X, HE)E, — g(E., HEDX + g(iX, HE)(E,
g=1
— 8(E;, HE){X} 4+ (X, HE,)HE, — h(E,, HE)HX
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= {H{HX — (tr )X + fHfX — (tr HHfX}
+ X — (tr FHHX ,

27;":'41 H(R(E;, X)E,) = }{g(X,E)HE,; — g(E;, E)HX + g(fX, E)HfE,
i=1

— g(E;, E)HFX} + h(X,E)HE; — h(E;, E)HX

= 1{2(1 — nHX + HfX — (tr NHX}
+ HX — (tr HHX .

Substituting the above two equations into (2.4) and making use of (1.17), we
have

Z K(E;, E)X = —YfHX — 2fHX — u(X)(tr H)U + 2(tr HHfX

— Atr Hf X — g(HX, YU + (tr H)X + 2(tr HHHX
— 2(n — DHX — w(X)HU + AHfX — 2(trt H) H*X} ,

which implies that

25 K(E, EVHX = —HEPX + 2fHHX + u(HX)(tx H)U
=1

— 20tr HHfHX + a(tr H)fHX + g(HU, HX)U
— (tr Y)HX — 2(tr HHHX + 2(n — HH'X
+ w(HX)HU — 2HfHX + 2(tr H)H°X .

Thus we have

4S =25 {(K(E,. EJHE, E;) + tr (7 5 H)Y)

(2.5) = —:’22 tr fH* + 2 tr (FH)* + (tr H)g(HU, U) — 2(tr Hf)?
+ Atr Ay tr fH + 2g(HU,HU) — (tr H)?
—25S—(n— 1) +2c H)tr H* + 2g(FH,VH) ,

where the metric g is extended to the tensor space in the standard fashion. In
particular, if the hypersurface M is minimal, that is, if tr H = 0, then

348 = —2tr fH? 4 tr ((H)? — (tr Hf)* + g(HU, HU)

(2.6)
+ S((n — 1) —8) + gWH,VH) .

Next we want to compute div ((tr fH)U — fHU). Since divZ = > %' ge(V 5, Z,
E,) for any vector field Z, we first have
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Vx(te (HYU) = (Vx(tr fA)U + (tr fADV xU

2. 21
@7 = 7 Vx(@GHE;, E))U — (tr fH)fHX + Atr fH)HX ,

because of (1.24). Remembering the choice of E; and (1.22), we have at x

Vxg(fHE;, E;)
= g((PxNHE, E;) + g(f(VxH)E;, E;)
= g(¢(H'E;, X)U + u(HE)HX,E,) + g({(V xH)E, E,)
= g(H'E;, X)3(U, E;) + g(U,HE)g(HX ,E,) + g(f(VxH)E,, E,)
= gH’X,E)g(U,E,) + gHU, E)g(HX,E)) + g(fVxH)E,, E,) .

Therefore
2n~1
Z; Vxg(fHE;, E,) = 28(H’X, U) + tr f{(V xH) .

Substituting this into (2.7), we have
Vyltr (AU) = 2e(H?X, YU + (tr fF yH)U — (tr fH)fHX + A(tr fHHHX

from which it follows that

div (tr (F)U) = 3 (2¢(H'E,, V)s(U. E) + (i 17 5, F)S(E., V)
— (rfH? & Attr fH) tr H .
Here

g(H’E;, U)g(U, E;) = g(E,;, H*U)g(U, E;) = g(H'U,U) = g(HU,HU) ,
(tr 177 5 HDE(E;, U) = (tx 7y, 0,5, H) = tr {7 H .

Hence

div ((tr (H))U) = 2g(HU, HU) + tr (fF ;H) — (tr fH)*
4+ AAtcfH)tr H .

On the other hand we have, from (1.22), (1.24) and (1.16),

2.8)

V(fHU) = WxDHU + f(VxH)U + fHV xU
= g(H*U, X)U + g(HU, U)HX + (T ;H)X
— 3u(XfU + u(U)X) + fH(—fHX + 2HX)
= g(HU,X)U + g(HU, V)HX + fVyH)X — $2u(X)U
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+ (1 — AX — uX)V) — FHYX + WH'X ,

from which it follows that

div (fHU) = g(HU,HU) + g(HU, U)(tr H) + tr {F,H

(2.9)
+(n—-1DA0 -2 —tr JH? + 2tr fH? .
Subtracting (2.9) from (2.8), we get

div ((tr fHHU — fHU) = g(HU,HU) — (tr fHY* 4+ Atr fH) tr H
(2.10) — (tr H)g(HU,U) + tr (fH)* — Atr fH?
+ - DA -2 .

In particular, if M is minimal, we get

@.11) div ((tr fHYU — fHU)
= g(HU,HU) — (&t fHY + tr (H)* — 2tr fH* + (n — (1 — 29 .
Now we compute div ((tr H(U). Since M has constant mean curvature, we have
V((tr HYU) = (tr H)WW , U = (tr H(—fHX + iHX) ,
which implies that
(2.12) div ((tr H)U) = —(tr H) tr fH + A(tr H)® .

Thus we have

348 — div (t fH)U — fHU) — L div ((tr H)U)
= 3(tr H)g(HU, U) — (i — D(tr A) tr fH — (1 + D(tr HY
—SS—-—m—-1D))+rDtrH—(n— 11 -2 +g(FH,VH) .

Assume that the hypersurface M is compact and orientable. Integrating the
above equation over M, we get, because of Green-Stokes’ theorem,

[ ey, v) — 3G — D By w iR

2.13) — 31+ D H? — S — (n — 1)) + (x H) tr B
—(n— D1 — B + gWH, VE)}di =

In particular, if the hypersurface is minimal, then

(2.14) j Sr—-1-8—@-0D1-2+ gWH,VFH)}dM =0 .
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Similarly, if we integrate
48 — div ((tr fAHU — fHU) + div ((tr H)U) ,

then we have

[ meu,0) ~ 3G + DB wiE

(2.15) — 31 =D H—SS —(n—1) + tr H tr B°
—(n—-1DA -2 +gWH,VH)}dM = 0.
From (2.14) we get easily

Theorem 2.1. A compact orientable minimal hypersurface of S* x §*
(n > 1) satisfying

(2.16) L{ (8t — (n — DS)AM > jM IPH|E dM

is an invariant hypersurface.

Corollary 2.2. A compact orientable minimal hypersurface with parallel
second fundamental tensor of S* x S* satisfying S > n — 1 is an invariant
hypersurface.

Corollary 2.3. A compact orientable totally geodesic hypersurface of
S* x 8™ is an invariant hypersurface.

3. Invariant hypersurfaces of S™ X S”

In this section we assume that the hypersurface M is invariant, i.e., (1.10)
can be wrttten as

3.1 JBX = BfX .

Since the 1-form # and the vector field U vanish identically, we have

(3.2) X=X,
(3.3) 1-2=0,
(3.4) Vaf =0,
(3.5) X2=0.

We may assume that! 2 = 1 in the following discussions. Then the formulas
(2.13) and (2.14) become

1 If we take 2 = —1, then we use (2.15) instead of (2.13) and get the same results.
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(3.6) J (S — 1) — ) — (tr HY + (tw H) tr B° + ¢(FH, PH)}dM = O ,
M

(3.7) Jw (S((n — 1) — 8) + g("H, FED}dM = 0,

respectively. Thus we get

Theorem 3.1. Let M be a compact orientable invariant minimal hyper-
surface of S® X S*. Then either M is the totally geodesic hypersurface or S =
n—1,o0orSx)>n-—1atsomexeM.

Corollary 3.2. Let M be a compact orientable invariant minimal hyper-
surface of S* X §*. If § < n — 1, then M is a totally geodesic hypersurface.

Now let

T(x) ={XeT,(M);fX =X}, T_(x) ={XeT,(M);fX=-X}.

Then the correspondence of x € M to T,(x) and that to 7_,(x) define (7 — 1)-
dimensional and »-dimensional distributions respectively, since trf = —2
= —1. By virtue of (3.4) it follows that both distributions are involutive. We
easily seethat if X e Ty(x) and Y e T_,(x), then 'y X ¢ T\(X) and F ;Y ¢ T_,(x).
Hence both distributions are parallel. Moreover, for the vector fields X and ¥
chosen in the above way, we have g(F ,.X,Y) = 0 and g(';; Y, X) = 0, where
Z ¢ T\(x) and W e T_,(X). Thus the integral manifolds of T,(X) and T_,(X)
are both totally geodesic in M. By standard arguments (see [2]) we know that
M is a product of the integral manifolds of the distributions 7',(x) and T _,(x).
In the next step we want to show that the integral submanifold of T_,(x) is S™.
Let X ¢ T_,(X). Then by virtue of (1.1), (1.4) it follows that

PBX = J(BX + JBX) = }(BX + BfX) = 0.

Thus BX belongs to the tangent space T(S") which is defined by V, = {X;
QX = X}. Conversely, if we take a vector field X belonging to V,, X can be
written as a sum of the tangential components and the normal components.
So we put

X =BX 4+ aN .
Applying P to the above equation, we have

0 = PY¥ = PBX + PN = }{(IBX + JBX) + «(N + IN)}
= HBX + BfX + 2aN},

3

from which we have
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This means that X = BX, and consequently V, is isomorphic to BT _;(x).
Thus, the integral submanifold being unique since M is complete, the integral
submanifold of T_,(x) must be §*. If X ¢ T,(x), then the same discussion as
above shows that BX € V, = {X; PX = X}. Since the integral submanifold
of Vp is another S”, the integral submanifold of T,(X) is a hypersurface of §”.
Thus we have

Theorem 3.3. A complete invariant hypersurface of §* X 8" is a product
manifold M’ X S*, where M’ is a hypersurface of S™.

In order to get further results, we prove

Lemma 3.4. Let P and Q be the projection of T(M) into T(M') and T(S™)
respectively. Then we have

(3.8 HOX =0.
Proof. By the definitions of J, P, Q, we have
JBOX = (P — Q)BQX = B(P — Q)0BX = —QBX = —BQOX ,
since ¥, = BT _,(x). Hence
(3.9) Fpy(UBOX) = —V zr(BOX) = —BVy(QX) — h(Y,QX)N .
On the other hand, we have

V 5y(UBOX) = J(BV y(QX) + WY, QX)N)
(3.10) = —BIF,(QX) + h(Y,0X)IN
= —BVy(0X) + h(Y,QX)N ,
because of the fact that Vy(QX) € ¥, and JN = N.
Comparing (3.9) and (3.10), we have (Y, OX) = 0, from which (3.8) fol-
lows.

We consider the immersion i': M’ — M’ X §* = M, and denote the differ-
ential of by B’. Then we have

— n+l
(3.11) Vppy BB'X = BBV'y.X' + AZX (X', YN, ,

where X/, Y’ ¢ T(M’), and h/’s are the second fundamental tensor with respect
to the normals N/,. Now we choose the last normal N,., in such a way that
N, is the unit normal to M’ in $™.

On the other hand, we have

P opy BE'X = BV pp.B'X' + h(B'X',B'Y)N ,

from which it follows that
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(3.12) Fppy BB'X = BBV'p.X' + 3 h(X’,Y)BN, + h(B'X', B'Y)N .
' a=1

Comparing (3.11) and (3.12) and remembering the choice of normals, we
get

(3.13) h (X, YY) = H(X', Y) fore=1,.--,7n,

' WB'X',B'Y) = K, (X', Y.
Since M’ is a totally geodesic submanifold in M’ x S*, it follows that
h(X,Y)y=0fora=1,---,n Thus

”+1
(3.14) Eltr Hf =+tr H,,,*,

for any natural number P. Furthermore,

2n-1 n—1 [
tr H* = 3, g(HPE,,E;) = ), g(H*B'E,,B'E ) + 7, g(HFN/, N) ,
1=1 4A=1 t=1
where N;, f = 1, - - -, n are unit normals to M’ in M’ x S™. Since there exist
X, in T(M) such that N, = QX,, we have H°N, = 0 because of Lemma 3.2.
Thus we get

n~ n=1
tr H? = Z gH"B'E, BE) = 3, 8(H:"EnE) = trH.® .

This shows that, once we fix a choice of normals in the above way, tr H”
is a function on M’. The immersion i: M — §™ x S™ being i’ x id: M’ x S*
— 5™ x 8", we have that the second fundamental tensor H,., is identical with
that of A’ in $*. Thus, denoting the second fundamental tensor of M’ in S*
by H’ and using (3.6), (3.7) and Fubini theorem of measure theory, we have
that

q S =) =) — @HY + (wH) H’3}dM’> vol §»
3.15) V"
+ fM o(PH,FH)AM = 0 ,

(3.16) (fw S(n— 1) — S’)dM') vol 87 + j _eH,FH)dM =0,

where S’ = tr H? = tr H* = S.
We first consider the case where M is a minimal hypersurface. In this case,
if $ =0, it follows that S = O and consequently M’ is the totally geodesic
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great sphere of S*. Thus we have M = S*~! x 5", where both $*~! and S™ are
of radius 1.

If S=n—1, then 8 =n — 1. Applying Chern-do Carmo-Kobayashi’s
theorem, we have M’ = S™(Vmj(n — 1)) x S* Y v/(n —m — 1)/ (n — 1)),
where we denote the radius of spheres in the parentheses. Hence we have M =
Sr(Vmj(n — 1) X S (n — m — 1)/(n — 1)) x S¥1).

Theorem 3.5. The S™(vm/(n — 1)) X S* ™ Yv/(n —m — )/(n — 1)) X
S®(1) in 8™ x 8™ are the only compact orientable invariant minimal hyper-
surfaces of S* X S™ satisfying S =n — 1.

Combining Theorem 3.1 and Theorem 3.5, we have

Theorem 3.6. The S™ Y1) x S™1) and

S™(Wm[(n — D) X S~ v/ (n —m — D](n — 1) X 5*(1)
are the only compact orientable invariant minimal hypersurfaces of S* X S"
satisfying S < n — 1.

Next we consider the formula (3.15). We assume that M has principal
curvatures 4, - - -, 4, such that for any pair of 2;,2;,{,j=1,---,2n — 1,
A;4; > 0 holds, that is, M has principal curvatures of the same sign or 0. Then
by means of the Cauchy-Schwarz inequality, we have

(tr ) tr A — §* = Z (27 Z (A7 Z AREE > 0.
Thus (3.6) becomes
f A= DB — @ HY + sVH.VR}AM <0,
which, together with (3.15), implies

(J.M, {(n — 1)<tr H? — - i (tr H’)z}dM'> vol §*

el -
= (n — 1)(Lptr{

(tr H’)I) dM') vol §*

(H’ - 1(tr H’)I)

( - i (tr H’)I)}dM’) vol §»

(r H’)I dM’) vol §* < 0,

(n — I)G H’

which implies that
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1
n—1

H = (tr H)I .

This shows that M’ is a totally umbilical hypersurface of §* and consequently
the small sphere of $*. Thus we get

Theorem 3.7. S*~(r) x S*(1) is the only compact orieniable invariant
hypersurface of 87 X 8 with constant mean curvature, which has principal
curvatures of the same sign or G.
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