SOME INTEGRAL FORMULAS AND THEIR APPLICATIONS TO HYPERSURFACES OF $S^n \times S^n$

GERALD D. LUDDEN & MASAFUMI OKUMURA

In his recent paper [4], Simons has established a fundamental formula for the Laplacian of the length of the second fundamental tensor of a submanifold of a Riemannian manifold and has obtained an application in the case of a minimal hypersurface of a sphere. Nomizu and Smyth [2] then obtained an important application of the formula of Simons' type to a hypersurface of constant mean curvature immersed in a space of nonnegative constant curvature.

On the other hand, Chern-do Carmo-Kobayashi [1] have obtained a classification theorem for submanifolds with the second fundamental tensor of constant length which is immersed in a sphere.

In this paper we discuss the same type of problem for compact orientable hypersurfaces with constant mean curvature immersed in $S^n \times S^n$.

In § 1 we review some fundamental formulas for a hypersurface of $S^n \times S^n$.

In § 2, using the formulas obtained in § 1 we establish an integral formula of Simons' type and obtain a theorem corresponding to that of Simons' paper.

In § 3 we consider an invariant hypersurface of $S^n \times S^n$ and prove some classification theorems corresponding to those of Chern-do Carmo-Kobayashi and of Nomizu-Smyth.

1. Hypersurfaces of $S^n \times S^n$

Let S^n be an *n*-dimensional sphere of radius 1, and consider $S^n \times S^n$. We denote by \overline{P} and \overline{Q} the projection mappings of the tangent space of $S^n \times S^n$ to each component S^n respectively. Then we have

$$(1.1) \bar{P} + \bar{Q} = 1,$$

$$\bar{P}^2 = \bar{P} , \qquad \bar{Q}^2 = \bar{Q} ,$$

$$(1.3) \bar{P}\bar{Q} = \bar{Q}\bar{P} = 0.$$

We put

$$\tilde{J} = \bar{P} - \bar{Q} .$$

Communicated by K. Yano, July 18, 1973.

Then by virtue of (1.1), (1.2) and (1.3), we can easily see that

$$\tilde{J}^2 = I,$$

$$(1.6) tr J = 0,$$

where $\operatorname{tr} \bar{J}$ denotes the trace of \bar{J} . We call \bar{J} an almost product structure on $S^n \times S^n$.

We define a Riemannian metric on $S^n \times S^n$ by

$$\bar{g}(\bar{X}, \bar{Y}) = g'(\bar{P}\bar{X}, \bar{P}\bar{Y}) + g'(\bar{Q}\bar{X}, \bar{Q}\bar{Y})$$

where g' is the Riemannian metric of S^n . Then it follows that

(1.7)
$$\bar{g}(\bar{J}\bar{X},\bar{Y}) = \bar{g}(\bar{X},\bar{J}\bar{Y}) ,$$

$$(1.8) \bar{V}_{x}\tilde{J} = 0 ,$$

where \bar{V} denotes the operator of covariant differentiation with respect to the Riemannian connection of \bar{g} .

Since the curvature tensor of S^n is of the form

$$R'(X', Y')Z' = g'(Y', Z')X' - g'(X', Z')Y'$$

the curvature tensor of $S^n \times S^n$ is given by [5], [6]

from which we can easily see that $S^n \times S^n$ is an Einstein manifold because of (1.6) and (1.7).

Now, let M be a hypersurface of $S^n \times S^n$, and B the differential of the imbedding i of M into $S^n \times S^n$. Let X be a tangent vector field of M. Applying \bar{J} to BX and to the unit normal vector N of M, we obtain vector fields $\bar{J}BX$ and $\bar{J}N$ which can be written in the following way:

$$JBX = BfX + u(X)N,$$

$$JN = BU + \lambda N.$$

Then f, u, U and λ define a symmetric linear transformation of the tangent bundle of M, a 1-form, a vector field and a function on M respectively. Moreover, we easily see that

$$g(U,X)=u(X),$$

where g is the induced Riemannian metric on M.

If u is identically 0, then M is said to be an invariant hypersurface, that is, the tangent space $T_x(M)$ is invariant under \bar{J} . We will see later (1.20) that this is equivalent to $\lambda^2 = 1$.

We denote by Γ the operator of covariant differentiation with respect to the Riemannian connection of g. Then the Gauss and Weingarten equations are given by

$$(1.12) \bar{V}_{BX}BY = B\bar{V}_XY + h(X,Y)N,$$

$$(1.13) \bar{V}_{BX}N = -BHX ,$$

where h is the second fundamental tensor of the hypersurface and satisfies

$$h(X, Y) = g(HX, Y) = g(X, HY) = h(Y, X)$$
.

The relation between the curvature tensors of $S^n \times S^n$ and of M is given by

(1.14)
$$\bar{R}(BX, BY)BZ = B\{R(X, Y)Z - h(Y, Z)HX + h(X, Z)HY\} + \{V_X h(Y, Z) - V_Y h(X, Z)\}N.$$

Substituting (1.9) into (1.14) and making use of (1.10), we obtain

(1.15)
$$R(X,Y)Z = \frac{1}{2} \{ g(Y,Z)X - g(X,Z)Y + g(fY,Z)fX - g(fX,Z)fY \} + h(Y,Z)HX - h(X,Z)HY,$$

(1.16)
$$(\nabla_X H)Y - (\nabla_Y H)X = \frac{1}{2}(u(X)fY - u(Y)fX) .$$

We apply \bar{J} to both sides of (1.10). Then by virtue of (1.10) and (1.11) we get

$$BX = B(f^2X + u(X)U) + (u(fX) + \lambda u(X))N,$$

which implies that

$$(1.17) f^2 X = X - u(X)U,$$

$$(1.18) u(tX) = -\lambda u(X) .$$

Applying \bar{J} to both sides of (1.11), we obtain

$$N = B(tU + \lambda U) + (u(U) + \lambda^2)N,$$

that is,

$$(1.19) fU = -\lambda U,$$

$$(1.20) u(U) = g(U, U) = 1 - \lambda^2.$$

Pick an orthonormal frame \bar{E}_{α} , $\alpha=1,\cdots,2n$ in such a way that the first 2n-1 \bar{E}_{α} 's satisfy $\bar{E}_{i}=BE_{i}$, and $\bar{E}_{2n}=N$. Then because of (1.6) and (1.10) we have

(1.21)
$$\operatorname{tr} f = \sum_{i=1}^{2n-1} g(fE_i, E_i) = \sum_{i=1}^{2n-1} \bar{g}(BfE_i, BE_i) = \sum_{i=1}^{2n-1} \bar{g}(\bar{J}BE_i, BE_i)$$

$$= \sum_{\alpha=1}^{2n} (\bar{J}\bar{E}_{\alpha}, \bar{E}_{\alpha}) - \bar{g}(\bar{J}N, N) = \operatorname{tr} \bar{J} - \lambda = -\lambda .$$

Differentiating (1.10) convariantly and making use of (1.10), (1.11), (1.12) and (1.13), we have

$$\bar{J}(BV_YX + h(X,Y)N)
= BV_Y(fX) + h(fX,Y)N + (V_Yu)(X)N + u(V_YX)N - u(X)BHY,$$

from which we have

$$(1.22) (\nabla_{Y} f) X = h(X, Y) U + u(X) HY,$$

$$(1.23) \qquad (\nabla_{\mathbf{v}} u)(X) = \lambda h(X, Y) - h(tX, Y) .$$

Similarly differentiating (1.11) covariantly, we get

$$(1.24) V_X U = -fHX + \lambda HX,$$

(1.25)
$$X\lambda = -2h(U, X) = -2u(HX) .$$

We also have

(1.26)
$$\operatorname{tr} \nabla_X H = \nabla_X \operatorname{tr} H = \sum_i g((\nabla_{E_i} H) X, E_i) ,$$

where E_i , $i = 1, \dots, 2n - 1$ are the vector fields which extend to an orthonormal basis in $T_x(M)$ in a neighborhood of x.

2. Integral formulas for the hypersurface

Consider the function $S = \operatorname{tr} H^2$. Since the unit normal vector N is defined up to a sign, S is defined globally on M. We will now compute the Laplacian ΔS . We have

$$XS = \nabla_X S = \nabla_X \operatorname{tr} H^2 = \operatorname{tr} \nabla_X H^2$$

= $\operatorname{tr} (\nabla_X H) H + \operatorname{tr} H(\nabla_X H) = 2 \operatorname{tr} (\nabla_X H) H$,

from which we have

$$YXS = 2 \operatorname{tr} (\mathcal{V}_Y(\mathcal{V}_X H))H + 2 \operatorname{tr} (\mathcal{V}_X H)(\mathcal{V}_Y H) ,$$

$$(\mathcal{V}_Y X)S = 2 \operatorname{tr} (\mathcal{V}_{\mathcal{V}_Y X} H)H .$$

Hence

(2.1)
$$\frac{1}{2}\Delta S = \sum_{i=1}^{2n-1} \{ \operatorname{tr} ((V_{E_i}V_{E_i}H - V_{F_{E_i}E_i}H)H) + \operatorname{tr} (V_{E_i}H)^2 \}.$$

Putting

$$K(X,Y) = \nabla_Y(\nabla_X H) - \nabla_{\nabla_Y X} H ,$$

we have

(2.2)
$$K(X, Y)Z = K(Y, X)Z + R(X, Y)(HZ) - H(R(X, Y)Z)$$
.

Let E_i , $i=1,\dots,2n-1$ be an orthonormal basis in $T_x(M)$, and extend the E_i to vector fields in a neighborhood of x in such a way that $\nabla_x E_i = 0$ at x. Let X be a vector field such that $\nabla_x X = 0$ at x. Replacing X, Y, and Z in (2.2) by E_i , X and E_i respectively and taking account of (1.16) and the fact that $\nabla_x E_i = 0$, $\nabla_x X = 0$, we obtain

$$\begin{split} K(E_i,X)E_i &= (\overline{V}_{E_i}(\overline{V}_XH))E_i - (\overline{V}_{\overline{V}_{E_i}X}H)E_i \\ &= \overline{V}_{E_i}((\overline{V}_XH)E_i) - (\overline{V}_XH)(\overline{V}_{E_i}E_i) \\ &= \overline{V}_{E_i}\{(\overline{V}_{E_i}H)X + \frac{1}{2}(u(X)fE_i - u(E_i)fX)\} \;. \end{split}$$

Continuing this computation and making use of (1.22), (1.23), we have at x

$$K(E_{i}, X)E_{i} = (V_{E_{i}}(V_{E_{i}}H))X + \frac{1}{2}\{(\lambda h(X, E_{i}) - h(fX, E_{i}))fE_{i} + u(x)(h(E_{i}, E_{i})U + u(E_{i})HE_{i}) - (\lambda h(E_{i}, E_{i}) - h(fE_{i}, E_{i}))fX - u(E_{i})(h(E_{i}, X)U + u(X)HE_{i})\},$$

from which we get

$$\begin{split} \sum_{i=1}^{2n-1} K(E_i, X) E_i &= \sum_{i=1}^{2n-1} \left\{ K(E_i, E_i) X + \frac{1}{2} (\lambda h(X, E_i) - h(fX, E_i)) f E_i \right\} \\ &+ \frac{1}{2} \left\{ u(X) (\operatorname{tr} H) U + u(X) \sum_{i=1}^{2n-1} g(U, E_i) H E_i \right. \\ &- \lambda (\operatorname{tr} H) f X + (\operatorname{tr} H f) f X \\ &- \sum_{i=1}^{2n-1} g(U, E_i) h(E_i, X) U - \sum_{i=1}^{2n-1} u(E_i) u(X) H E_i \right\} \,. \end{split}$$

Here

$$\begin{split} \sum_{i=1}^{2n-1} h(X,E_i) f E_i &= f \bigg(\sum_{i=1}^{2n-1} g(HX,E_i) E_i \bigg) = f HX \;, \\ \sum_{i=1}^{2n-1} h(fX,E_i) f E_i &= f H f X \;, \\ \sum_{i=1}^{2n-1} u(E_i) H E_i &= \sum_{i=1}^{2n-1} g(U,E_i) H E_i = H \bigg(\sum_{i=1}^{2n-1} g(U,E_i) E_i \bigg) = HU \;, \\ \sum_{i=1}^{2n-1} g(U,E_i) h(E_i,X) &= \sum_{i=1}^{2n-1} g(U,E_i) g(HX,E_i) \\ &= \sum_{i=1}^{2n-1} g(HX,g(U,E_i) E_i) = g(HX,U) \;. \end{split}$$

Hence

(2.3)
$$\sum_{i=1}^{2n-1} K(E_i, X) E_i = \sum_{i=1}^{2n-1} K(E_i, E_i) X + \frac{1}{2} \{ \lambda f H X - f H f X + u(x) (\text{tr } H) U + (\text{tr } H f) f X - \lambda (\text{tr } H) f X - g(H X, U) U \}.$$

Thus we get from (2.2) and (2.3) that

$$\sum_{i=1}^{2n-1} K(E_i, E_i) X + \frac{1}{2} \{ \lambda f H X - f H f X + u(X) (\text{tr } H) U + (\text{tr } H f) f X - \lambda (\text{tr } H) f X - g(H X, U) U \}$$

$$= \sum_{i=1}^{2n-1} \{ K(X, E_i) E_i + R(E_i, X) (H E_i) - H(R(E_i, X) E_i) \} .$$

We now assume that the hypersurface M has constant mean curvature, that is, tr H = const. Then (1.26) and the choice of E_i and X show that

$$\sum_{i=1}^{2n-1} K(X, E_i) E_i = \sum_{i=1}^{2n-1} (\nabla_X (\nabla_{E_i} H) - \nabla_{\nabla_X E_i} H) E_i = \sum_{i=1}^{2n-1} (\nabla_X (\nabla_{E_i} H)) E_i = 0.$$

Hence we get

(2.4)
$$\sum_{i=1}^{2n-1} K(E_i, E_i)X = -\frac{1}{2} \{ \lambda f H X - f H f X + u(X)(\operatorname{tr} H) U + (\operatorname{tr} H f) f X - \lambda(\operatorname{tr} H) f X - g(H X, U) U \} + \sum_{i=1}^{2n-1} \{ R(E_i, X)(H E_i) - H(R(E_i, X) E_i) \}.$$

On the other hand, by (1.15) we have

$$\sum_{i=1}^{2n-1} R(E_i, X)(HE_i) = \frac{1}{2} \{ g(X, HE_i) E_i - g(E_i, HE_i) X + g(fX, HE_i) f E_i - g(fE_i, HE_i) f X \} + h(X, HE_i) H E_i - h(E_i, HE_i) H X$$

$$= \frac{1}{2} \{ HX - (\text{tr } H)X + fHfX - (\text{tr } Hf)fX \}$$

+ $H^3X - (\text{tr } H^2)HX$,

$$\begin{split} \sum_{i=1}^{2n-1} H(R(E_i, X)E_i) &= \frac{1}{2} \{ g(X, E_i) H E_i - g(E_i, E_i) H X + g(fX, E_i) H f E_i \\ &- g(fE_i, E_i) H F X \} + h(X, E_i) H E_i - h(E_i, E_i) H X \\ &= \frac{1}{2} \{ 2(1-n) H X + H f^2 X - (\text{tr } f) H f X \} \\ &+ H^3 X - (\text{tr } H) H^2 X \; . \end{split}$$

Substituting the above two equations into (2.4) and making use of (1.17), we have

$$\sum_{i=1}^{2n-1} K(E_i, E_i) X = -\frac{1}{2} \{ \lambda f H X - 2 f H X - u(X) (\operatorname{tr} H) U + 2 (\operatorname{tr} H f) f X - \lambda (\operatorname{tr} H) f X - g(H X, U) U + (\operatorname{tr} H) X + 2 (\operatorname{tr} H^2) H X - 2 (n-1) H X - u(X) H U + \lambda H f X - 2 (\operatorname{tr} H) H^2 X \} ,$$

which implies that

$$2 \sum_{i=1}^{2n-1} K(E_i, E_i) HX = -\lambda f H^2 X + 2 f H f HX + u(HX)(\operatorname{tr} H) U$$

$$- 2(\operatorname{tr} H f) f HX + \lambda(\operatorname{tr} H) f HX + g(HU, HX) U$$

$$- (\operatorname{tr} H) HX - 2(\operatorname{tr} H^2) H^2 X + 2(n-1) H^2 X$$

$$+ u(HX) HU - \lambda H f HX + 2(\operatorname{tr} H) H^3 X.$$

Thus we have

$$\Delta S = 2 \sum_{j,i=1}^{2n-1} \left\{ g(K(E_i, E_i)HE_j, E_j) + \operatorname{tr}(V_{E_i}H)^2 \right\}$$

$$= -2\lambda \operatorname{tr} fH^2 + 2 \operatorname{tr}(fH)^2 + (\operatorname{tr} H)g(HU, U) - 2(\operatorname{tr} Hf)^2$$

$$+ \lambda(\operatorname{tr} H) \operatorname{tr} fH + 2g(HU, HU) - (\operatorname{tr} H)^2$$

$$- 2S(S - (n-1)) + 2(\operatorname{tr} H) \operatorname{tr} H^3 + 2g(VH, VH),$$

where the metric g is extended to the tensor space in the standard fashion. In particular, if the hypersurface M is minimal, that is, if tr H = 0, then

(2.6)
$$\frac{\frac{1}{2}\Delta S = -\lambda \operatorname{tr} fH^2 + \operatorname{tr} (fH)^2 - (\operatorname{tr} Hf)^2 + g(HU, HU)}{+ S((n-1) - S) + g(\overline{V}H, \overline{V}H)}.$$

Next we want to compute div ((tr fH)U - fHU). Since div $Z = \sum_{i=1}^{2n-1} g(\nabla_{E_i} Z, E_i)$ for any vector field Z, we first have

because of (1.24). Remembering the choice of E_i and (1.22), we have at x

$$\nabla_{X}g(fHE_{i}, E_{i})
= g((\nabla_{X}f)HE_{i}, E_{i}) + g(f(\nabla_{X}H)E_{i}, E_{i})
= g(g(H^{2}E_{i}, X)U + u(HE_{i})HX, E_{i}) + g(f(\nabla_{X}H)E_{i}, E_{i})
= g(H^{2}E_{i}, X)g(U, E_{i}) + g(U, HE_{i})g(HX, E_{i}) + g(f(\nabla_{X}H)E_{i}, E_{i})
= g(H^{2}X, E_{i})g(U, E_{i}) + g(HU, E_{i})g(HX, E_{i}) + g(f(\nabla_{X}H)E_{i}, E_{i}) .$$

Therefore

$$\sum_{i=1}^{2n-1} \nabla_X g(fHE_i, E_i) = 2g(H^2X, U) + \operatorname{tr} f(\nabla_X H) .$$

Substituting this into (2.7), we have

$$\nabla_X(\operatorname{tr}(fH)U) = 2g(H^2X, U)U + (\operatorname{tr}f\nabla_XH)U - (\operatorname{tr}fH)fHX + \lambda(\operatorname{tr}fH)HX,$$

from which it follows that

div (tr
$$(fH)U$$
) = $\sum_{i=1}^{2n-1} \{ 2g(H^2E_i, U)g(U, E_i) + (\text{tr } f\nabla_{E_i}H)g(E_i, U) \}$
- $(\text{tr } fH)^2 + \lambda(\text{tr } fH) \text{ tr } H$.

Here

Hence

(2.8)
$$\operatorname{div}\left((\operatorname{tr}(fH))U\right) = 2g(HU, HU) + \operatorname{tr}(fV_UH) - (\operatorname{tr}fH)^2 + \lambda(\operatorname{tr}fH)\operatorname{tr}H.$$

On the other hand we have, from (1.22), (1.24) and (1.16),

$$\begin{split} \nabla_{X}(fHU) &= (\nabla_{X}f)HU + f(\nabla_{X}H)U + fH\nabla_{X}U \\ &= g(H^{2}U, X)U + g(HU, U)HX + f((\nabla_{U}H)X \\ &- \frac{1}{2}u(X)fU + \frac{1}{2}u(U)fX) + fH(-fHX + \lambda HX) \\ &= g(H^{2}U, X)U + g(HU, U)HX + f(\nabla_{U}H)X - \frac{1}{2}\lambda^{2}u(X)U \end{split}$$

$$+\frac{1}{9}(1-\lambda^2)(X-u(X)U)-(fH)^2X+\lambda fH^2X$$
,

from which it follows that

(2.9)
$$\operatorname{div}(fHU) = g(HU, HU) + g(HU, U)(\operatorname{tr} H) + \operatorname{tr} f \nabla_{v} H + (n-1)(1-\lambda^{2}) - \operatorname{tr} (fH)^{2} + \lambda \operatorname{tr} f H^{2}.$$

Subtracting (2.9) from (2.8), we get

$$\operatorname{div} ((\operatorname{tr} fH)U - fHU) = g(HU, HU) - (\operatorname{tr} fH)^{2} + \lambda(\operatorname{tr} fH) \operatorname{tr} H$$

$$- (\operatorname{tr} H)g(HU, U) + \operatorname{tr} (fH)^{2} - \lambda \operatorname{tr} fH^{2}$$

$$+ (n-1)(1-\lambda^{2}).$$

In particular, if M is minimal, we get

Now we compute div ((tr H(U)). Since M has constant mean curvature, we have

$$\nabla_X((\operatorname{tr} H)U) = (\operatorname{tr} H)\nabla_X U = (\operatorname{tr} H)(-fHX + \lambda HX)$$
,

which implies that

(2.12)
$$\operatorname{div} ((\operatorname{tr} H)U) = -(\operatorname{tr} H) \operatorname{tr} fH + \lambda (\operatorname{tr} H)^{2}.$$

Thus we have

$$\frac{1}{2}\Delta S - \operatorname{div}((\operatorname{tr} fH)U - fHU) - \frac{1}{2}\operatorname{div}((\operatorname{tr} H)U)
= \frac{3}{2}(\operatorname{tr} H)g(HU, U) - \frac{1}{2}(\lambda - 1)(\operatorname{tr} H)\operatorname{tr} fH - \frac{1}{2}(1 + \lambda)(\operatorname{tr} H)^{2}
- S(S - (n - 1)) + (\operatorname{tr} H)\operatorname{tr} H^{2} - (n - 1)(1 - \lambda^{2}) + g(VH, VH).$$

Assume that the hypersurface M is compact and orientable. Integrating the above equation over M, we get, because of Green-Stokes' theorem,

$$\int_{\mathcal{H}} \left\{ \frac{3}{2} (\operatorname{tr} H) g(HU, U) - \frac{1}{2} (\lambda - 1) (\operatorname{tr} H) \operatorname{tr} fH \right.$$

$$\left. - \frac{1}{2} (1 + \lambda) (\operatorname{tr} H)^{2} - S(S - (n - 1)) + (\operatorname{tr} H) \operatorname{tr} H^{3} \right.$$

$$\left. - (n - 1) (1 - \lambda^{2}) + g(VH, VH) \right\} dM = 0.$$

In particular, if the hypersurface is minimal, then

$$(2.14) \quad \int_{M} \{S(n-1)-S)-(n-1)(1-\lambda^{2})+g(\nabla H,\nabla H)\}dM=0.$$

Similarly, if we integrate

$$\frac{1}{2}\Delta S - \operatorname{div}\left((\operatorname{tr} fH)U - fHU\right) + \operatorname{div}\left((\operatorname{tr} H)U\right)$$
,

then we have

$$\int_{M} \left\{ \frac{3}{2} (\operatorname{tr} H) g(HU, U) - \frac{1}{2} (\lambda + 1) (\operatorname{tr} H) \operatorname{tr} f H \right.$$

$$\left. - \frac{1}{2} (1 - \lambda) (\operatorname{tr} H)^{2} - S(S - (n - 1)) + (\operatorname{tr} H) \operatorname{tr} H^{3} \right.$$

$$\left. - (n - 1) (1 - \lambda^{2}) + g(VH, VH) \right\} dM = 0.$$

From (2.14) we get easily

Theorem 2.1. A compact orientable minimal hypersurface of $S^n \times S^n$ (n > 1) satisfying

(2.16)
$$\int_{M} (S^{2} - (n-1)S) dM \ge \int_{M} \|VH\|^{2} dM$$

is an invariant hypersurface.

Corollary 2.2. A compact orientable minimal hypersurface with parallel second fundamental tensor of $S^n \times S^n$ satisfying $S \ge n-1$ is an invariant hypersurface.

Corollary 2.3. A compact orientable totally geodesic hypersurface of $S^n \times S^n$ is an invariant hypersurface.

3. Invariant hypersurfaces of $S^n \times S^n$

In this section we assume that the hypersurface M is invariant, i.e., (1.10) can be written as

$$\bar{J}BX = BtX.$$

Since the 1-form u and the vector field U vanish identically, we have

$$(3.2) f^2X = X,$$

$$(3.3) 1 - \lambda^2 = 0,$$

$$(3.4) V_x f = 0,$$

$$(3.5) X\lambda = 0.$$

We may assume that $\lambda = 1$ in the following discussions. Then the formulas (2.13) and (2.14) become

¹ If we take $\lambda = -1$, then we use (2.15) instead of (2.13) and get the same results.

(3.6)
$$\int_{\mathcal{U}} \{S((n-1)-S) - (\operatorname{tr} H)^2 + (\operatorname{tr} H) \operatorname{tr} H^3 + g(\overline{V}H, \overline{V}H)\} dM = 0,$$

(3.7)
$$\int_{M} \{S((n-1)-S) + g(VH,VH)\} dM = 0,$$

respectively. Thus we get

Theorem 3.1. Let M be a compact orientable invariant minimal hypersurface of $S^n \times S^n$. Then either M is the totally geodesic hypersurface or $S \equiv n-1$, or S(x) > n-1 at some $x \in M$.

Corollary 3.2. Let M be a compact orientable invariant minimal hypersurface of $S^n \times S^n$. If S < n-1, then M is a totally geodesic hypersurface. Now let

$$T_1(x) = \{X \in T_x(M); fX = X\}, \qquad T_{-1}(x) = \{X \in T_x(M); fX = -X\}.$$

Then the correspondence of $x \in M$ to $T_1(x)$ and that to $T_{-1}(x)$ define (n-1)-dimensional and n-dimensional distributions respectively, since $\operatorname{tr} f = -\lambda = -1$. By virtue of (3.4) it follows that both distributions are involutive. We easily see that if $X \in T_1(x)$ and $Y \in T_{-1}(x)$, then $V_T X \in T_1(X)$ and $V_T Y \in T_{-1}(x)$. Hence both distributions are parallel. Moreover, for the vector fields X and Y chosen in the above way, we have $g(V_Z X, Y) = 0$ and $g(V_W Y, X) = 0$, where $Z \in T_1(x)$ and $W \in T_{-1}(X)$. Thus the integral manifolds of $T_1(X)$ and $T_{-1}(X)$ are both totally geodesic in M. By standard arguments (see [2]) we know that M is a product of the integral manifolds of the distributions $T_1(x)$ and $T_{-1}(x)$. In the next step we want to show that the integral submanifold of $T_{-1}(x)$ is S^n .

Let $X \in T_{-1}(X)$. Then by virtue of (1.1), (1.4) it follows that

$$\bar{P}BX = \frac{1}{2}(IBX + \bar{J}BX) = \frac{1}{2}(BX + BfX) = 0$$
.

Thus BX belongs to the tangent space $T(S^n)$ which is defined by $V_Q = \{\overline{X}; \overline{Q}\overline{X} = \overline{X}\}$. Conversely, if we take a vector field \overline{X} belonging to V_Q , \overline{X} can be written as a sum of the tangential components and the normal components. So we put

$$\bar{X} = BX + \alpha N$$
.

Applying \bar{P} to the above equation, we have

$$0 = \bar{P}\bar{X} = \bar{P}BX + \alpha \bar{P}N = \frac{1}{2}\{(IBX + \bar{J}BX) + \alpha(IN + \bar{J}N)\}$$

= $\frac{1}{2}\{BX + BfX + 2\alpha N\}$,

from which we have

$$tX = -X$$
, $\alpha = 0$.

This means that $\overline{X}=BX$, and consequently V_Q is isomorphic to $BT_{-1}(x)$. Thus, the integral submanifold being unique since M is complete, the integral submanifold of $T_{-1}(x)$ must be S^n . If $X \in T_1(x)$, then the same discussion as above shows that $BX \in V_P = \{\overline{X}; \overline{PX} = \overline{X}\}$. Since the integral submanifold of V_P is another S^n , the integral submanifold of $T_1(X)$ is a hypersurface of S^n . Thus we have

Theorem 3.3. A complete invariant hypersurface of $S^n \times S^n$ is a product manifold $M' \times S^n$, where M' is a hypersurface of S^n .

In order to get further results, we prove

Lemma 3.4. Let P and Q be the projection of T(M) into T(M') and $T(S^n)$ respectively. Then we have

$$(3.8) HQX = 0.$$

Proof. By the definitions of \bar{J} , P, Q, we have

$$\overline{J}BQX = (\overline{P} - \overline{Q})BQX = B(\overline{P} - \overline{Q})\overline{Q}BX = -\overline{Q}BX = -BQX$$

since $V_Q = BT_{-1}(x)$. Hence

$$(3.9) \quad \bar{V}_{BY}(\bar{J}BQX) = -\bar{V}_{BY}(BQX) = -B\bar{V}_{Y}(QX) - h(Y,QX)N.$$

On the other hand, we have

(3.10)
$$\bar{V}_{BY}(\bar{J}BQX) = \bar{J}(BV_Y(QX) + h(Y, QX)N) \\
= -BV_Y(QX) + h(Y, QX)\bar{J}N \\
= -BV_Y(QX) + h(Y, QX)N,$$

because of the fact that $V_Y(QX) \in V_Q$ and $\bar{J}N = N$.

Comparing (3.9) and (3.10), we have h(Y, QX) = 0, from which (3.8) follows.

We consider the immersion $i': M' \to M' \times S^n = M$, and denote the differential of i' by B'. Then we have

(3.11)
$$\bar{V}_{BB'Y'}BB'X' = BB'V'_{Y'}X' + \sum_{i=1}^{n+1} h'_{A}(X', Y')N'_{A},$$

where X', $Y' \in T(M')$, and h'_A 's are the second fundamental tensor with respect to the normals N'_A . Now we choose the last normal N'_{n+1} in such a way that N'_{n+1} is the unit normal to M' in S^n .

On the other hand, we have

$$\bar{V}_{BB'Y'}BB'X' = BV_{B'Y'}B'X' + h(B'X', B'Y')N,$$

from which it follows that

(3.12)
$$\bar{V}_{BB'Y'}BB'X' = BB'\bar{V}'_{Y'}X' + \sum_{\alpha=1}^{n} h_{\alpha}(X', Y')BN_{\alpha} + h(B'X', B'Y')N$$
.

Comparing (3.11) and (3.12) and remembering the choice of normals, we get

(3.13)
$$h_{\alpha}(X', Y') = h'_{\alpha}(X', Y') \quad \text{for } \alpha = 1, \dots, n, \\ h(B'X', B'Y') = h'_{n+1}(X', Y').$$

Since M' is a totally geodesic submanifold in $M' \times S^n$, it follows that $h_{\alpha}(X', Y') = 0$ for $\alpha = 1, \dots, n$. Thus

for any natural number P. Furthermore,

tr
$$H^P = \sum_{i=1}^{2n-1} g(H^P E_i, E_i) = \sum_{A=1}^{n-1} g(H^P B' E_A, B' E_A) + \sum_{t=1}^{n} g(H^P N'_t, N'_t)$$
,

where N'_t , $t=1,\dots,n$ are unit normals to M' in $M'\times S^n$. Since there exist X'_t in T(M) such that $N'_t=QX_t$, we have $H^pN'_t=0$ because of Lemma 3.2. Thus we get

$$\operatorname{tr} H^P = \sum_{A=1}^{n-1} g(H^P B' E_A, B' E_A) = \sum_{A=1}^{n-1} g(H'_{n+1}{}^P E_A, E_A) = \operatorname{tr} H'_{n+1}{}^P.$$

This shows that, once we fix a choice of normals in the above way, tr H^P is a function on M'. The immersion $i: M \to S^n \times S^n$ being $i' \times \text{id}: M' \times S^n \to S^n \times S^n$, we have that the second fundamental tensor H'_{n+1} is identical with that of M' in S^n . Thus, denoting the second fundamental tensor of M' in S^n by H' and using (3.6), (3.7) and Fubini theorem of measure theory, we have that

(3.15)
$$\left(\int_{M'} \left\{ S'((n-1) - S') - (\operatorname{tr} H')^2 + (\operatorname{tr} H') \operatorname{tr} H'^3 \right\} dM' \right) \operatorname{vol} S^n + \int_{M'} g(\overline{V}H, \overline{V}H) dM = 0 ,$$

(3.16)
$$\left(\int_{M'} S'((n-1) - S') dM' \right) \text{vol } S^n + \int_{M} g(VH, VH) dM = 0 ,$$

where $S' = \operatorname{tr} H'^2 = \operatorname{tr} H^2 = S$.

We first consider the case where M is a minimal hypersurface. In this case, if S = 0, it follows that S' = 0 and consequently M' is the totally geodesic

great sphere of S^n . Thus we have $M = S^{n-1} \times S^n$, where both S^{n-1} and S^n are of radius 1.

If S=n-1, then S'=n-1. Applying Chern-do Carmo-Kobayashi's theorem, we have $M'=S^m(\sqrt{m/(n-1)})\times S^{n-m-1}(\sqrt{(n-m-1)/(n-1)})$, where we denote the radius of spheres in the parentheses. Hence we have $M=S^m(\sqrt{m/(n-1)})\times S^{n-m-1}(\sqrt{(n-m-1)/(n-1)})\times S^n(1)$.

Theorem 3.5. The $S^m(\sqrt{m/(n-1)}) \times S^{n-m-1}(\sqrt{(n-m-1)/(n-1)}) \times S^n(1)$ in $S^n \times S^n$ are the only compact orientable invariant minimal hypersurfaces of $S^n \times S^n$ satisfying S = n-1.

Combining Theorem 3.1 and Theorem 3.5, we have

Theorem 3.6. The $S^{n-1}(1) \times S^n(1)$ and

$$S^{m}(\sqrt{m/(n-1)}) \times S^{n-m-1}(\sqrt{(n-m-1)/(n-1)}) \times S^{n}(1)$$

are the only compact orientable invariant minimal hypersurfaces of $S^n \times S^n$ satisfying $S \leq n-1$.

Next we consider the formula (3.15). We assume that M has principal curvatures $\lambda_1, \dots, \lambda_{2n-1}$ such that for any pair of $\lambda_i, \lambda_j, i, j = 1, \dots, 2n-1$, $\lambda_i \lambda_j \geq 0$ holds, that is, M has principal curvatures of the same sign or 0. Then by means of the Cauchy-Schwarz inequality, we have

(tr *H*) tr
$$H^3 - S^2 = \sum_{i=1}^{2n-1} (\lambda_i^{1/2})^2 \sum_{i=1}^{2n-1} (\lambda_i^{3/2})^2 - \sum_{i=1}^{2n-1} \lambda_i^{1/2} \lambda_i^{3/2} \ge 0$$
.

Thus (3.6) becomes

$$\int_{W} \{(n-1) \operatorname{tr} H^{2} - (\operatorname{tr} H)^{2} + g(VH, VH)\} dM \le 0,$$

which, together with (3.15), implies

$$\left(\int_{M'} \left\{ (n-1) \left(\operatorname{tr} H'^2 - \frac{1}{n-1} (\operatorname{tr} H')^2 \right\} dM' \right) \operatorname{vol} S^n \right. \\
= (n-1) \left(\int_{M'} \operatorname{tr} \left(H' - \frac{1}{n-1} (\operatorname{tr} H') I \right)^2 dM' \right) \operatorname{vol} S^n \\
= (n-1) \left(\int_{M'} \operatorname{tr} \left\{ \left(H' - \frac{1}{n-1} (\operatorname{tr} H') I \right)^t \cdot \left(H' - \frac{1}{n-1} (\operatorname{tr} H') I \right) \right\} dM' \right) \operatorname{vol} S^n \\
= (n-1) \left(\int_{M'} \left| H' - \frac{1}{n-1} (\operatorname{tr} H') I \right|^2 dM' \right) \operatorname{vol} S^n \le 0 ,$$

which implies that

$$H' = \frac{1}{n-1} (\operatorname{tr} H') I .$$

This shows that M' is a totally umbilical hypersurface of S^n and consequently the small sphere of S^n . Thus we get

Theorem 3.7. $S^{n-1}(r) \times S^n(1)$ is the only compact orientable invariant hypersurface of $S^n \times S^n$ with constant mean curvature, which has principal curvatures of the same sign or 0.

Bibliography

- [1] S. S. Chern, M. do Carmo & S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer, Berlin, 1970, 60-75.
- [2] K. Nomizu & B. Smyth, A formula of Simons type and hypersurfaces with constant mean curvature, J. Differential Geometry 3 (1969) 367-377.
- [3] M. Okumura, Totally umbilical hypersurface of a locally product manifold, Kodai Math. Sem. Rep. 19 (1967) 35-42.
- [4] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105.
- [5] S. Tachibana, Some theorems on locally product Riemannian manifold, Tôhoku Math. J. 12 (1960) 281-292.
- [6] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965.

MICHIGAN STATE UNIVERSITY